MOST* photometry and modeling of the rapidly oscillating (roAp) star γ Equulei

1 Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
e-mail: gruberbauer@astro.univie.ac.at
2 Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
e-mail: saio@astr.tohoku.ac.jp
3 Department of Astronomy and Physics, St. Mary’s University Halifax, NS B3H 3C3, Canada
e-mail: guenther@ap.stmarys.ca
4 Department Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
e-mail: gordonwa@uvic.ca; kuschnig@astro.phys.ubc.ca; matthews@phas.ubc.ca
5 Dépt. de physique, Univ. de Montréal CP 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
e-mail: moffat@astro.umontreal.ca
6 Dept. Astronomy & Astrophysics, David Dunlop Obs., Univ. Toronto PO Box 360, Richmond Hill, ON L4C 4Y6, Canada
e-mail: rucinski@astro.utronto.ca
7 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
e-mail: sasselov@cfa.harvard.edu

Received 10 October 2007 / Accepted 6 January 2008

ABSTRACT

Aims. Despite photometry and spectroscopy of its oscillations obtained over the past 25 years, the pulsation frequency spectrum of the rapidly oscillating Ap (roAp) star γ Equ has remained poorly understood. Better time-series photometry, combined with recent advances to incorporate interior magnetic field geometry into pulsational models, enable us to perform improved asteroseismology of this roAp star.

Methods. We obtained 19 days of continuous high-precision photometry of γ Equ with the MOST (Microvariability & Oscillations of STars) satellite. The data were reduced with two different reduction techniques and significant frequencies were identified. Those frequencies were fitted by interpolating a grid of pulsation models that include dipole magnetic fields of various polar strengths.

Results. We identify 7 frequencies in γ Equ that we associate with 5 high-overtone p-modes and 1st and 2nd harmonics of the dominant p-mode. One of the modes and both harmonics are new discoveries for this star. Our best model solution (1.8 M_\odot, log $T_{\text{eff}} = 3.882$; polar field strength ~ 8.1 kG) leads to unique mode identifications for these frequencies ($\ell = 0, 1, 2$ and 4). This is the first purely asteroseismic fit to a grid of magnetic models. We measure amplitude and phase modulation of the primary frequency due to beating with a closely spaced frequency that had never been resolved. This casts doubts on theories that such modulation – unrelated to the rotation of the star – is due to a stochastic excitation mechanism.

Key words. stars: chemically peculiar – stars: oscillations – stars: individual: γ Equ – stars: magnetic fields – methods: data analysis

1. Introduction – the history of γ Equ

Rapidly oscillating Ap (roAp) stars form a class of variables consisting of cool magnetic Ap stars with spectral types ranging from A-F, luminosity class V, and were discovered by Kurtz (Kurtz 1982). Photometric and spectroscopic observations during the last 2 decades characterize roAp stars with low amplitude pulsations (<13 mmag) and periods between 5 to 21 min. It is now widely accepted that the oscillations are due to high-overtone ($n > 15$) non-radial p-mode pulsations. The observed frequencies can be described in a first-order approximation by the oblique pulsator model as described by Kurtz (1982). In this model the pulsation axis is aligned with the magnetic axis, which itself is oblique to the rotation axis of the star. It has since been refined and improved to include additional effects like the coriolis force (Bigot & Dziembowski 2002).

The oscillations in roAp stars are most probably excited by the κ mechanism acting in the hydrogen ionization zone (Dziembowski & Goode 1996), while the prime candidate for the selection mechanism of the observed pulsation modes is the magnetic field (e.g. Bigot et al. 2000; Cunha & Gough 2000; Balmforth et al. 2001; Bigot & Dziembowski 2002, 2003; Saio 2005; Cunha 2006). Similar to non-oscillating Ap (noAp) stars, the group of roAp stars also shows a distinctive chemical pattern in their atmospheres, in particular an overabundance of rare earth elements, which points to stratification and vertical abundance gradients. Tackling the question of what drives the roAp pulsation, it is important to note that apart from the similar chemical composition, noAp stars show comparable rotation periods and magnetic fields but higher effective temperatures (Ryabchikova et al. 2004). Thus, their hydrogen ionization zone lies further out in the stellar envelope, which prevents efficient driving of...
pulsation. All together, roAp stars have given new impulse to asteroseismology and 2D mapping of pulsation (Kochukhov 2004), as well as detailed 3D mapping of (magnetic) stellar atmospheres, has become possible. For reviews on primarily observational aspects of roAp stars we refer to Kurtz & Martinez (2000) and Kurtz et al. (2004) and on theoretical aspects to Shibahashi (2003) and Cunha (2005).

γ Equ, (HD 201601, HR 8097, A9p, \(m_V = 4.7 \)) was the 6th discovery as a roAp star. It was long known to have a significant magnetic field (Babcock 1958) which is variable with a period of \(\sim 72 \) years (Bonsack & Plachowski 1974; Scholz 1979; Leroy et al. 1994). Rotation, a solar-like magnetic cycle or procession of the star’s rotation axis due to its binary companion are candidate mechanisms for this cyclic variation. The binary hypothesis was supported by Scholz et al. (1997), who observed a temporary drop in radial velocity for γ Equ during 4 consecutive nights. Their results are however contradicted by Mkrtichian et al. (1998, 1999). Magnetic field data spanning more than 58 years indicate that the variation is most likely due to rotation and therefore \(P_{\text{rad}} = P_{\text{rot}} \) (Bychkov et al. 2006). This explanation is also supported by many spectroscopic observations showing very sharp absorption lines (e.g. Kanaan & Hatzes 1998) which are typical for a slow rotator (or a star seen pole-on).

Kurtz (1983) was the first to detect a pulsation period of 12.5 min (1.339 mHz) with an amplitude varying between 0.32 and 1.43 mmag and speculated about a rotation period of 38 days, inconsistent with the magnetic field measurements mentioned above. Aside from rotation, beating with a closely spaced frequency has been proposed as a cause, for which the present paper gives further evidence. The pulsation was confirmed shortly after Kurtz’s study by Weiss (1983). Bychkov (1987) reported first evidence for radial velocity (RV) variations, but it took two more years for a clear detection (Libbrecht 1988). Although unable to detect the 1.339 mHz oscillations reported by Kurtz (1983), Libbrecht discovered three frequencies at 1.365 mHz, 1.369 mHz and 1.427 mHz. He suggested that the amplitude modulation observed in the spectra of roAp stars may not be due to closely spaced frequencies, but rather caused by short mode lifetimes in the order of \(\sim 1 \) d. He concluded that both peaks therefore belong to a single \(p \)-mode oscillation. The follow-up study by Weiss & Schneider (1989) aimed at performing simultaneous spectroscopic and photometric studies but failed to confirm γ Equ’s pulsation. The latter authors applied a correlation technique using more than 100 A wide spectral ranges in order to improve the S/N ratio relative to previous techniques, based on individual lines. This approach turned out to be inapplicable, considering the peculiar abundance structure of roAp star atmospheres which is now well known. Matthews & Scott (1995) then claimed to have detected variability with rather large radial velocity amplitudes but their results were inconsistent with previous findings.

Detailed photometric observations were conducted by Martinez et al. (1996) using a multi-site campaign in 1992, spanning a total of 26 nights. Their results also suggested limited life times of pulsation modes, because additional frequencies appeared in their analysis of individual nights. However, all three frequencies detected so far were confirmed, and prewhitening of 1.366 mHz revealed a fourth eigenfrequency at 1.397 mHz. Using these four frequencies they concluded a spacing of consecutive radial overtones of \(\Delta \nu \sim 30 \mu \text{Hz} \) based on the asymptotic theory for low-degree, high-overtone \(p \)-mode pulsations (Tassoul 1990). They did not detect any evidence for non-linear behavior of the eigenfrequencies (i.e. harmonics) which, as will be shown in this paper, is indeed present in the MOST data. So far their observing campaign was the most recent photometric investigation of γ Equ. A period of spectroscopic studies focusing on pulsation, abundance and stratification analyses followed. Kanaan & Hatzes (1998) reported on RV amplitudes for chromium and titanium and speculated that this is due to their concentration close to the magnetic – hence also pulsation – poles, while other elements (e.g. iron) showing no RV variations may be concentrated at the magnetic equator. Malanushenko et al. (1998) independently arrived at a similar conclusion and they are the first who identified the rare earth elements (REE) Pr III and Nd III to show the largest variations (up to 800 m s\(^{-1}\)).

Most other atomic species had very low or non-measurable RV variations and the authors concluded that previous spectroscopic observations failed to detect significant radial velocity variations due to the chosen spectral regions and/or low spectral resolution. Savanov et al. (1999) further clarified the situation by drawing attention to a possible incorrect identification of spectral lines in Kanaan & Hatzes (1998) and concluded that Pr III and Nd III were responsible for the large RV amplitudes discussed in their analysis.

Further investigations by Kochukhov & Ryabchikova (2001) and Ryabchikova et al. (2002) impressively explained amplitude modulations of different elements and even ions of the same element by lines being formed at different atmospheric depths. The authors also tried a first mode identification based on rather short data sets of line profile variations (LPVs) and they argue for \(\ell = 2 \) or 3, and \(m = -\ell \) or \(-\ell + 1 \) modes. Shibahashi et al. (2004) disagreed with this analysis and suggested a shock wave causing the observed LPVs which in turn was questioned by Kochukhov et al. (2007) who argued that the pulsational velocity should not exceed the local sound speed. The latter authors propose a modified oblique pulsator model where LPVs are caused by pulsation velocity fields superposed by sinusoidal line width changes due to convection, but which previously was thought to be suppressed. In any case, they agree with Shibahashi et al. that the identification of the primary frequency as an \(\ell = 1, m = 0 \) mode is still the most likely explanation, which is also supported by this paper. The issue is still being debated though (Shibahashi et al. 2007).

A still unresolved issue are magnetic field variations synchronized with pulsation. Leone & Kurtz (2003) showed evidence for this, but subsequent investigations (Kochukhov et al. 2004; Bychkov et al. 2005; Savanov et al. 2006) could not confirm their findings. Hubrig et al. (2004) corroborate this null detection for γ Equ with ESO-FORS1 data.

Despite a history of more than 25 years of observations, the pulsation frequency spectrum of γ Equ remains poorly understood. Several frequencies have been published, but up to now these have never been observed simultaneously. This is where MOST steps in, providing the most complete high precision photometric campaign ever conducted for γ Equ and covering continuously a timespan of 19 days.

2. Observations and data reduction

2.1. MOST observations

MOST is a Canadian space satellite designed for the detection of stellar variability with amplitudes down to several ppm on time scales up to several days (Walker et al. 2003). The satellite was launched in June 2003 and has since proven to deliver photometric time series of unprecedented precision. It carries a Makutov telescope with an aperture of 15 cm, uses a broadband filter (350–700 nm) and operates in a low Earth orbit following
the terminator in an almost polar orbit. MOST can observe stars in the continuous viewing zone for up to 6 weeks with a pointing precision of \(\sim 1' \). An array of Fabry lenses is used to suppress effects of satellite jitter in the data of primary targets of \(V < 6 \text{mag} \). \(\gamma \) Equ was observed for 19 days from 07/28/2004 to 08/16/2004 with exposures (integration time = 11 s) taken continuously once every 30 s. As \(\gamma \) Equ was one of the first primary targets observed by MOST, stray light, produced by earthshine, and other instrumental effects were still being investigated at this time with the aim of improving the observing procedures for future runs. In fact, this data set was the basis for the development of the C reduction pipeline for MOST Fabry Imaging targets (Reegen et al. 2006).

2.2. Data reduction using decorrelation

Stray light effects are corrected by computing a correlation between target and background pixels distinguished by a fixed aperture, where target denotes pixels inside the aperture and background characterizes pixels outside the aperture, which are assumed to contain no stellar signal at all. A “neutral” area flag, for pixels not used for either purpose, is meant to exclude pixels at the transition zone close to the edge of the aperture.

As it turned out throughout the MOST mission, each target star’s photometry suffered specific problems which needed to be addressed individually by optimizing the reduction parameters. Due to bad data quality at the beginning of the \(\gamma \) Equ-run about 1060 frames had to be rejected. Additional frames needed to be eliminated due to pointing problems in the early days of MOST operations which resulted in distorted Fabry image geometries identified by comparison to a mean normalized Fabry image. If the pixel values in an individual (normalized) frame deviate by more than \(g \sigma \), where \(g \) is an integer, from the pixel values of the mean normalized reference image, the frame is rejected. Since the mean reference image changes after the elimination process, this step is repeated iteratively until no more frames need to be rejected. Statistics of the reduction process are shown in Table 1.

<table>
<thead>
<tr>
<th>Reduction step</th>
<th># Rejected</th>
<th>% Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>saturated pixels</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td>saturated ACS errors</td>
<td>1637</td>
<td>3.33</td>
</tr>
<tr>
<td>deviating image geometry</td>
<td>21679</td>
<td>44.35</td>
</tr>
<tr>
<td>excessive number of cosmics</td>
<td>1002</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Tests showed that the number of images in which pixels are deviating by more than 5\(\sigma \) first decreased as expected, but increased after about ten iterations (see Fig. 1, upper panel) and later decreased again, indicating two separate causes for deviating Fabry image geometry. Figure 2 shows the raw light curve after correcting for cosmic rays, phased with the orbital period, clearly indicating which phases are responsible for the image geometry deviations. Not surprisingly, the majority of these rejections concern exposures taken during high stray light phases and therefore cause regular gaps in the final data set (see Fig. 3). To ensure that this reduced duty cycle does not impair the identification of intrinsic frequencies, the analysis was repeated with the data set obtained after the first iteration step in the image geometry evaluation, which eliminated only 807 frames. In the lower panel of Fig. 1 we compare the spectral windows of both reductions, showing that the rejections mainly affected orbit-induced artifacts \(f_{\text{orbit}} = 14.19 \text{d}^{-1} \). The final analysis did not yield a different set of intrinsic, but considerably fewer instrumental frequencies.

2.3. Data reduction using “doughnut” fitting

Another (less invasive) reduction method was developed to verify the consistency of our frequency analysis. In a first step an average Fabry frame is determined from all frames obtained during orbital phases with very low stray light signal. The mean intensity, derived from pixels which are defined as background (“sky”) pixels, is subtracted from all pixels. The resulting frame is scaled to the mean intensity of the \(N \) pixels with the highest intensity values, where \(N \) is of the order of 100. The resulting frame serves as sort of normalized point spread function (PSF) for a Fabry image (MOST’s Fabry lenses produce images of the entrance aperture of the optics which resemble a doughnut – hence the name “doughnut fitting”). As a next step a linear regression between pixel intensities of an image and the corresponding pixel intensities of the mean PSF frame is performed. For each of these images the slope \(k \) of the linear fit gives a scaling factor, while the offset \(d \) corresponds to the image mean background intensity. Each frame is replaced by the PSF frame multiplied with the corresponding scaling factor \(k \) and the mean background intensity \(d \) is added. The average intensities of all target and background pixels result in the target and background geometries.
Light curve, respectively. Finally, a linear fit between the background and target light curve is determined and subtracted from the target light curve resulting in the final light curve. In the case of γ Equ the latter consists of 48,955 datapoints.

The advantage of this method is the insensitivity of the linear regression to extreme pixel values, for instance due to cosmic ray hits or local stray light effects. Also, contrary to the method described in Sect. 2.2 (see also Reegen et al. 2006), the data set is not split into subsets and processed individually, which could distort the low frequency signal. The entire data set is reduced en-block, no subsets are created which qualifies this procedure as a perfect cross-check for detecting artifacts due to data reduction. The disadvantage of this method is the stray light correction which is less efficient as for the decorrelation method.

3. Frequency analysis

Time series resulting from both reductions outlined in Sect. 2 were analyzed individually. SigSPEC (Reegen 2007) was used to obtain frequencies by means of the spectral significance between 0 and 360 d$^{-1}$ in a prewhitening sequence down to a significance level of 5.46, corresponding roughly to an amplitude S/N ratio of 4. Only frequencies without a counterpart in the sky background were considered, following the procedure described by Reegen et al. (2008). MOST background light curves typically contain several dozen frequencies between 0 and 360 d$^{-1}$, produced by stray light and instrumental effects. These are, in most cases well confined to the orbital frequency (f$_{\text{orbit}}$ = 14.19 d$^{-1}$) and harmonics of it, to 1d$^{-1}$ side lobes due to the passages of MOST above nearly the same ground pattern after 14 orbits, or are caused by temperature drifts of electronic boards. In the case of γ Equ we used a method similar to what is described in Gruberbauer et al. (2007) to identify non-intrinsic frequencies. Finally, the remaining frequencies deduced from both reduction methods were compared and, again, only matching frequencies were taken into account for our final analysis (Fig. 4).

For the early MOST runs the low-frequency region is known to be affected by an instrumental effect producing spectral features centered on 3.16 d$^{-1}$ and multiples of it (Reegen et al. 2006). This instrumental effect is much weaker for the background pixels which explains why the corresponding frequencies remain even after comparisons with the background frequency spectrum and what justifies the rejection of all frequencies below 10 d$^{-1}$. Some of the power excess in the low frequency region might be still of stellar origin, but the current data is inconclusive. We also found the frequencies between 10 and 35 d$^{-1}$ to be multiples of 3.16 d$^{-1}$, but no other MOST data set shows these instrumental effects at such high frequencies. Because we prefer a critical approach, in the end, only the six higher frequencies with $f > 100$ d$^{-1}$ were considered to be intrinsic to γ Equ beyond doubt.

Table 2 lists the result of our conservative analysis. Two additional significant frequencies, not included in the table, can be
Table 2. The list of frequencies considered to be intrinsic to γ Equ.

<table>
<thead>
<tr>
<th>Grid</th>
<th>Frequency</th>
<th>Latitude</th>
<th>Mass</th>
<th>Radial Order</th>
<th>azimuthal Order</th>
<th>Centrifugal Order</th>
<th>Model Frequency</th>
<th>Observation Frequency</th>
<th>Model Frequency</th>
<th>Observation Frequency</th>
<th>Model Frequency</th>
<th>Observation Frequency</th>
<th>Model Frequency</th>
<th>Observation Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid 1</td>
<td>1.364594</td>
<td>6</td>
<td>362</td>
<td>29</td>
<td>2.9</td>
<td>196</td>
<td>2.7704</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid 2</td>
<td>1.365141</td>
<td>13</td>
<td>124</td>
<td>2.4</td>
<td>175</td>
<td>2.6594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid 3</td>
<td>1.427102</td>
<td>34</td>
<td>43</td>
<td>2.1</td>
<td>25</td>
<td>1.8325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid 4</td>
<td>1.388872</td>
<td>44</td>
<td>32</td>
<td>2.1</td>
<td>17</td>
<td>1.3636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid 5</td>
<td>1.310914</td>
<td>51</td>
<td>27</td>
<td>2.1</td>
<td>11</td>
<td>2.7173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid 6</td>
<td>2.729148</td>
<td>32</td>
<td>44</td>
<td>2.1</td>
<td>27</td>
<td>2.0870</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Model fitting

Pulsation models were calculated taking into account a magnetic dipole with polar field strength, \(B_p \), up to 12 kG. These models were tried to match the currently estimated parameter space of γ Equ, which is \(\log T_{\text{eff}} = 3.882 \pm 0.011 \text{ K} \), log \(L / L_\odot = 1.10 \pm 0.03 \), and \(M \sim 1.74 \pm 0.03 M_\odot \) (Kochukhov & Bagnulo 2006). Figure 5 shows the position and parameters of all models involved. For the corresponding values and further details, we again refer to Table 3.

To increase the resolution of our model grid, the mode frequencies were interpolated linearly in \(B_p \) (and \(\log T_{\text{eff}} \), log \(L / L_\odot \)) for a fixed mass and chemical composition. The step width for the interpolation was chosen to be 0.02 kG in \(B_p \) and 0.0002 in log \(T_{\text{eff}} \). Since not all modes with the same degree \(\ell \) and radial order \(n \) converge in the model calculations, the sequence of frequencies for a specific mode may not cover the entire chosen stellar fundamental parameter space (log \(T_{\text{eff}} \), log \(L / L_\odot \), and \(M \)). Finally, we used a single coordinate, \(\Delta \nu \), according to

\[
\Delta \nu = 0.1349 \left(\frac{\rho}{\rho_\odot} \right)^{0.5} \text{ mHz},
\]

where \(\rho \) is the mean density of the stellar model. All model fitting was carried out for a given mass in the \((B_p, \Delta \nu)\)-space with a \(\chi^2 \)-test similar to Guenther & Brown (2004). Since no prior model identification was not a reasonable option, each model’s eigenfrequencies of spherical degrees \(\ell = 0 \) to \(\ell = 4 \) were compared to the five observed frequencies. The \(1\sigma \)-uncertainties of the observed frequencies were estimated to be roughly 0.25 of the upper frequency error derived according to Kallinger et al. (2007). The corresponding \(1\sigma \)-errors assigned to the individual model frequencies were assumed to be 0.2 mHz.

The best fitted models, represented by a minimum \(\chi^2 \), are listed in Table 4. Grid 3, as defined in Table 3, outperforms the other models by far. It is the only model grid that manages to produce frequencies that fit all five observed frequencies on average to within the uncertainties (\(\chi^2 \leq 1 \)), as it is illustrated by the upper panel of Fig. 6. As expected, including convection for Grid 3 destroys the fit, while for grids with large \(\chi^2 \) it has the opposite effect. The best fit is located at the center of an extended patch. Its proximity to a genuine calculated model ensures that this good fit is not an artifact produced by the interpolation (also see Sect. 6). The mean parameter values for the \(\chi^2 \leq 1 \) region with the mentioned interpolation step size are log \(T_{\text{eff}} = 3.8818 \), log \(L / L_\odot = 1.0871 \) and \(B_p = 8.1 \text{ kG} \).

Figure 7 shows an échelle diagram of the best fitted model together with the observations. \(f_1 \), the primary frequency, is identified as an \(\ell = 1 \) mode. \(f_2 \) and \(f_3 \) are matched by consecutive \(\ell = 4 \) modes. The remaining two frequencies, \(f_4 \) and \(f_5 \), are fitted by modes of degree \(\ell = 2 \) and \(\ell = 0 \). As a comparison, the lower panel of Fig. 6 shows the fitting results to Grid 6, a grid with considerably larger \(\chi^2 \) values. Interestingly, while all grids except Grid 3 fail at delivering \(\chi^2 < 1 \)-results, the mode identification remains stable for grids with \(\chi^2 < 4 \). In particular, the two closely spaced model frequencies in the vicinity of \(f_1 \)
and \(f_2 \) are found to fit the same degrees \(\ell = 1 \) and 4 for Grids 3, 7a, 5a, and 6. This is not the case for 6a and 1a. Thus, in our grids there seems to be a tendency towards the mode identification of Grid 3 for better fitted models. Also, convection is shown to radically influence the model frequencies.

In Fig. 6 obvious discontinuities can be seen in the fitting results. They are produced when the interpolation routine cannot find two modes of equal spherical degree \(\ell \) and radial order \(n \) in both models that are acting as sampling points. This can happen, as already mentioned in Sect. 4, when the \(\ell \)-value of a mode formally changes, because the former associated spherical harmonic does no longer supply most of the kinetic energy. Also, the cyclic variation of the damping rate as a function of \(B_\text{loop} \), as shown in Saio & Gautschy (2004), has an effect on the “availability” of certain modes. Around the maximum of the damping rate, the kinetic energy is so broadly distributed among the different \(\ell \)-components that convergence of the model calculations starts to fail. This effect is clearly visible as the two large discontinuities in each panel of Fig. 6, which bears resemblance to what is presented in Saio & Gautschy (2004).

6. Discussion

6.1. The frequencies of \(\gamma \) Equ

As mentioned in the introduction, roAp stars are characterized by an interaction of a strong global magnetic field with velocity fields due to pulsation of still poorly known origin, all leading to a complex eigenfrequency spectrum. The latter provide the only directly accessible information concerning the internal structure of these stars.

Data obtained by MOST have allowed us to unambiguously identify 7 frequencies (Table 2) above 1.3 mHz, including the first two harmonics of the primary frequency, which significantly exceed the mean noise level of \(\sim 10 \) ppm between 1.15 and 1.75 mHz. The comparison with Martinez et al. yields a match for \(f_1, f_3, \) and \(f_4 \). Our \(f_2 \) has never been detected before, probably because \(f_1 \) and \(f_2 \) could not be resolved as individual frequencies. This is also important for the discussion on amplitude modulation of the primary frequency, for which we refer to the next section. Our value for \(f_5 \) is comparable to their \(v_1 = 1.321 \) mHz (taken from Weiss 1983), but differs by \(\sim 0.01 \) mHz. We assume that they have misidentified a 1-day alias of the real frequency but this is difficult to assess, since no frequency uncertainties are known for this data set. Given that the data set from Weiss (1983) spans only three nights, the poor frequency resolution \(1/33 \) d\(^{-1} \) = 0.004 mHz supports our assumption. Thus, we can for the first time confirm and expand the previous set of frequencies unambiguously.

When discussing published amplitudes (including those in the present paper) one has to keep in mind that two different properties prevent a direct comparison. First, amplitude modulations are present which lead to different amplitudes for observations obtained at different beating phases. Second, it has been well known since the eighties that amplitudes (Weiss & Schneider 1984) and phases (Weiss 1986) depend on wavelength and the former are rapidly decreasing towards the red. The passband of MOST is broad compared to the Strömgren system.
frequently used for roAp star photometry, hence the observed MOST amplitudes are intrinsically smaller.

6.2. Amplitude modulation

Amplitude modulation of γ Equ’s primary frequency has often been mentioned in the literature and rotation or closely spaced frequencies have been proposed as possible explanations. Because of the relatively small effect and the limited accuracy of the data a specific modulation period could never be accurately determined. This situation, however, changed with MOST. To distinguish between amplitude modulation of a single frequency and beating of two closely spaced frequencies one needs to discuss simultaneous phase and amplitude changes (Breger & Pamyatnykh 2006). Figure 8 illustrates the correlation of amplitude and phase variations for \(f_1 \) with a relative phase shift of \(\frac{\pi}{4} \), which is indicative for beating of a close pair of frequencies spaced by \(f_{\text{beat}} \sim 0.07 \text{d}^{-1} \) (~0.0008 mHz).

We find \(f_1 + f_{\text{beat}} \approx f_2 \). The best fitting pulsation model predicts both \(f_1 \) and \(f_2 \) to be eigenfrequencies of the star, hence we conclude that the “closely spaced frequencies”-hypothesis is correct. It comes as no surprise that previous observations, especially time-resolved spectroscopy, could not explain the modulation effect, since it is impossible to resolve \(f_2 \) with short time bases. The possibility of unresolved modes in such data should be taken into account when studying pulsation via residual spectra, produced by subtraction of a mean spectrum phased by only a single pulsation frequency. For ground-based photometry, the aliasing problem and the higher noise level might also have contributed to the difficulty of detecting \(f_2 \).

We have found no evidence for modulation of the other frequencies, but we can comment on two other significant frequencies with amplitudes ~40 ppm close to \(f_1 \) which are not instrumental. These frequencies appear to be Fourier artifacts produced by irregularities in the beating of \(f_1 \) and \(f_2 \). As mentioned in Sect. 3, a multi-sine fit fails to converge if they are included in the solution. We have to mention here again that the broad filter band pass used by MOST may be disadvantageous for such investigations.
the same way as the amplitude modulation. The dotted lines represent the 1σ-confidence limits. The similarity of amplitude modulation and phase shift, as well as the minimum amplitude coinciding with the time of the phase shift turning point, suggest an amplitude modulation due to beating of two closely spaced frequencies with a beat frequency of \(-0.07 \text{ d}^{-1}\) (\(-0.0008 \text{ mHz}\)). This corresponds to the beat frequency of \(f_1\) and \(f_2\).

6.3. On the validity of interpolated frequencies

To increase the resolution of our grid, we used linear interpolation in temperature, luminosity, and polar magnetic field strength, respectively. It may be questioned if such an interpolation is a sensible approach. For a test we compared interpolated values with genuine models. For all genuine models \(m_g\) enclosed by 2 additional genuine models \(m_{g,1}\) and \(m_{g,2}\); we produced frequencies at the position of \(m_g\) by interpolation between \(m_{g,1}\) and \(m_{g,2}\). The deviation of the interpolated frequencies from their genuine values, normalized to the gap in \(\log T_{\text{eff}}\) between the enclosing and the enclosed models, was calculated and over 16,000 frequencies were compared. Figure 9 shows a histogram of the results. It illustrates that our interpolation delivers a reasonable approximation to genuine models, as long as the gaps in between the reference models remain reasonably small.

In the case of Grid 3 (see Table 3) we also repeated the frequency fitting procedure. We interpolated between \(3a\) and \(3c\) and omitted the \(3b\)-models of Grid 3. Figure 10 shows the \(\chi^2\)-statistics for our observed frequencies based on an interpolation in this much coarser grid (best fit with \(\chi^2 = 2.642\)). A comparison of Fig. 10 with the upper panel of Fig. 6 again shows that interpolation is applicable for small gaps in between genuine models, which is also reflected in the results of the fitting procedure. Since not all modes can be approximated sufficiently through linear interpolation, as indicated by the outliers in Fig. 9, it is necessary to check whether the modeled frequencies that fit the observations satisfy the linear assumption. Figure 11 presents the absolute (rather than the normalized) deviation of the interpolated frequencies from the genuine frequencies for the \(3b\)-models. It shows that the interpolated values of all 5 modes that fit the observations are hardly deviating from their genuine values – the deviations lie well within the model uncertainties.

It is important to note that all of the modes which fit the observed frequencies are actually not expected to be excited according to current model physics. This hints at remaining problems concerning the stability analysis or the implemented driving mechanism.

6.4. Latitudinal amplitude dependence

As discussed in Sect. 5 the observed frequencies of \(\gamma\ Equ\) are identified as modes of \(\ell = 0, 1, 2,\) and 4. Those modes, however, have amplitude distribution on the stellar surface considerably deviating from that of a single Legendre function \(P_\ell(\cos \theta)\) due to the strong magnetic effect (Fig. 12). The amplitude for \(f_1\) (\(\ell = 1\)) and \(f_4\) (\(\ell = 2\)) is more concentrated toward the polar regions than \(P_1(\cos \theta)\) and \(P_2(\cos \theta)\). It is interesting that the amplitude distribution of \(f_2\) (\(\ell = 2\)) on a hemisphere is not very different from that of \(f_4\) (\(\ell = 1\)) having very small amplitude near the equator, although \(f_1\) is antisymmetric and \(f_4\) symmetric to the equator.

For \(f_2\) and \(f_4\) (\(\ell = 4\)) and \(f_5\) (\(\ell = 0\)) the amplitude distributions are strongly concentrated around \(\cos \theta \approx 0.65\), drastically
reasonable approximation to genuine models for our fitting procedure.

to the upper panel of Fig. 6. Linear interpolation in expected from previous observations (Kochukhov & Bagnulo

We have demonstrated that our models of roAp stars reproduce the observations in great detail. The temperature and luminos-

7. Conclusion

We have demonstrated that our models of roAp stars reproduce the observations in great detail. The temperature and luminos-

Fig. 10. The result of fitting our observed frequencies to a model grid calculated by interpolation between 3a and 3c. Although the 3b-models are omitted and no fit with \(\chi^2 \leq 1 \) is found, the figure compares well to the upper panel of Fig. 6. Linear interpolation in \(B_p \) is therefore a reasonable approximation to genuine models for our fitting procedure.

Fig. 11. The absolute deviations of all interpolated frequencies at the position of 3b, using Grid models 3a and 3c, from the genuine fre-

Fig. 12. Latitudinal variation of the perturbation of radiative flux on the surface is shown for each mode matched to \(\gamma \) Equ. (The case of \(f_3 \) is not shown because it is very close to that of \(f_2 \).) The ordinate shows \(\cos \theta \) with \(\theta \) being co-latitude (\(\cos \theta = 1 \) at poles). The plots are the real parts of the eigenfunctions for the flux perturbation at \(B_p = 8 \) kG for model 3b (Table 3). Each curve is normalized as that the maximum is unity.

different from those for non-magnetic stars. Although the light variation from an \(\ell = 4 \) mode of a non-magnetic star is expected to suffer from a strong cancellation on the stellar disk, Fig. 12 indicates that our cases \(f_2 \) and \(f_1 \) seem hardly affected by this effect.

Acknowledgements. We would like to thank the referee for all the useful com-

M. Gruberbauer et al.: Asteroseismology of \(\gamma \) Equ 231

factor of 2 between (surface) magnetic field modulus and best fitting magnetic pulsation model appears again for the roAp star 10 Aql (Huber et al. 2008), another MOST primary target. Certainly, more investigations of this sort have to be conducted in order to solve this problem.

Pulsation amplitude changes for roAp stars were discussed in the literature as a consequence of limited mode life time or beat-

Finally, we could identify the modes of all 7 frequencies detected so far in \(\gamma \) Equ as \(\ell = 0, 1, 2 \) and 4, with \(f_2 \) and \(f_3 \) being the harmonics of \(f_1 \) produced by non-linear pulsation. Since we are not able to calculate non-axisymmetric modes, all of these frequencies are assumed to be \((m = 0) \) p-modes. While we cannot rule out the possibility of excitation of frequencies with \((m \neq 0) \), axisymmetric modes are most probable, because of the extremely long rotation period of \(\gamma \) Equ and the assumption of a magnetic dipole. The assignment of any \(\ell \)-value to these modes, however, has to be understood as a convenient simplification.

In the presence of strong magnetic fields a mode’s oscillation behavior cannot be described by a single spherical harmonic. Consequently, we alert the reader that analysis techniques using this assumption, e.g. mode identification based on LPVs, should be adjusted for magnetic effects on the pulsation geometry.
Research Council (NSERC) Canada. RK is supported by the Canadian Space Agency (CSA).

References

Bychkov, V. D. 1987, SVA Lett., 13, 325
Cunha, M. S. 2005, JApA, 26, 213
Kurtz, D. W., & Martinez, P. 2000, Baltic Astron., 9, 253
Lenz, P., & Breger, M. 2005, Commun. Asteroseismol., 146, 53
Scholz, G. 1979, Astron. Nachr., 300, 213